

Rudolf-Wissell-Str. 28a 37079 Göttingen, Germany

Phone: +49 551-50556-0
Fax: +49 551-50556-384
E-mail: sales@sysy.com
Web: www.sysy.com

GluN2B (NMDAR2B)

Cat.No. 244 115; Polyclonal Guinea pig antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage	50 µg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin was added for stabilization. For reconstitution add 50 µl H ₂ O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C to -80°C until use. Antibodies should be stored at +4°C when still lyophilized. Do not freeze! For detailed information, see back of the data sheet.
Applications	WB: 1: 1000 (AP staining) IP: not tested yet ICC: not recommended IHC: not recommended IHC-P: not tested yet
Immunogen	Recombinant protein corresponding to AA 918 to 1470 from rat GluN2B (UniProt Id: Q00960)
Reactivity	Reacts with: rat (Q00960), mouse (Q01097). Other species not tested yet.
Specificity	Specific for GluN 2B, no cross-reactivity to GluN 2A.

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Background

GluNs (NMDA-receptors) represent a class of glutamate receptors that are of central importance in synaptic plasticity. Multiple NMDA receptor subtypes exist: GluN1 and **GluN2 A-D**. GluN1 is the most important as it is required for activity. NMDA-receptors allow Ca²⁺ influx and are thought to trigger Ca²⁺ dependent postsynaptic processes involved in long term potentiation and depression.

Selected References for 244 115

 $INSIHGT: an\ accessible\ multi-scale,\ multi-modal\ 3D\ spatial\ biology\ platform.$

Yau CN, Hung JTS, Campbell RAA, Wong TCY, Huang B, Wong BTY, Chow NKN, Zhang L, Tsoi EPL, Tan Y, Li JJX, et al. Nature communications (2024) 151: 10888. IHC; tested species: mouse

CDKL5 deficiency in adult glutamatergic neurons alters synaptic activity and causes spontaneous seizures via TrkB signaling. Zhu ZA, Li YY, Xu J, Xue H, Feng X, Zhu YC, Xiong ZQ

Cell reports (2023) 4210: 113202.. WB; tested species: mouse

Selected General References

NMDA receptor surface mobility depends on NR2A-2B subunits. Groc L et al. Proc. Natl. Acad. Sci. U.S.A. (2006) PubMed:17124177

Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique.

Nagy GG et al. Eur. J. Neurosci. (2004) PubMed:15610162

NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli.

Petralia RS et al. Eur. J. Neurosci. (2002) PubMed:11876787

A developmental change in NMDA receptor-associated proteins at hippocampal synapses.

Sans N et al. J. Neurosci. (2000) PubMed:10648730

Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex.

Conti F et al. Cereb. Cortex (1999) PubMed:10220224

The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of

Petralia RS et al. J. Neurosci. (1994) PubMed:7931566

Heteromeric NMDA receptors: molecular and functional distinction of subtypes.

Monyer H et al. Science (1992) PubMed:1350383

Access the online factsheet including applicable protocols at https://sysy.com/product/244115 or scan the QR-code.

FAQ - How should I store my antibody?

Shipping Conditions

 All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freezedried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized!
 Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- **Control peptides** should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle
 between freezing and thawing (to reduce frost-build-up), which is exactly what should be
 avoided. For the same reason, antibody vials should be placed in an area of the freezer that
 has minimal temperature fluctuations, for instance towards the back rather than on a door
 shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 20 µl)
 and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock
 concentration is affected by evaporation and adsorption of the antibody to the surface of the
 storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of
 activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides

• Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- **Purified IgG** should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is
 recommended. Adding a carrier protein like BSA will increase long term stability. Most of our
 antibodies already contain carrier proteins. Please refer to the data-sheet for detailed
 information.

Fluorescence-labeled Antibodies

• Store as a liquid with 1:1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our purified antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add
 the amount of deionized water given in the respective datasheet. If higher volumes are
 preferred, add water as mentioned above and then the desired amount of PBS and a
 stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies
 already contain albumin. Take this into account when adding more carrier protein.
 For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the
 solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled
 with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1:1 (v/v) glycerol to a final
 concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in
 liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freezethaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.