Synaptotagmin 1 also known as p65, is an integral membrane glycoprotein of neuronal synaptic vesicles and secretory granules of neuroendocrine cells that is widely (but not ubiquitously) expressed in the central and peripheral nervous system. It has a variable N-terminal domain that is exposed to the lumen of the vesicle and a conserved cytoplasmic tail that contains two Ca$^{2+}$-binding C2-domains. Ca$^{2+}$-binding to synaptotagmin triggers exocytosis of synaptic vesicles, thus linking Ca$^{2+}$-influx during depolarization to neurotransmitter release.

Lumenal antibodies were used in living neurons to label synaptic vesicles from the outside via endocytotic uptake.

Selected References for 105 011BT

Synaptic vesicle traffic is supported by transient actin filaments and regulated by PKA and NO.

Chenouard N, Xuan F, Tsien RW
Nature communications (2020) 11: 5318. **UPTAKE; tested species: rat**

A minimalist model to measure interactions between proteins and synaptic vesicles.

Perego E, Reshetniak S, Lorenz C, Hoffmann F, Milovanovic D, Rizzoli SO, Köster S
Scientific reports (2020) 101: 21086. **IP**

Selected General References

RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion.

Geppert M, Südhof TC
Annual review of neuroscience (1998) 21: 75-95.**.

The synaptic vesicle cycle: a cascade of protein-protein interactions.

Südhof TC

Synaptic vesicles and exocytosis.

Jahn R, Südhof TC
Annual review of neuroscience (1994) 17: 219-46.**.

Synaptotagmin I: a major Ca$^{2+}$ sensor for transmitter release at a central synapse.

Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC
Cell (1994) 794: 717-27.**.

Synaptotagmin: a calcium sensor on the synaptic vesicle surface.

Brose N, Petrovsky AG, Südhof TC, Jahn R

Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C.

Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC
Nature (1990) 3456272: 260-3.**.

Background

Synaptotagmin 1 cytoplasmic tail

Cat.No. 105 011BT; Monoclonal mouse antibody, 100 µg purified IgG (lyophilized)

<table>
<thead>
<tr>
<th>Data Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstitution/Storage</td>
</tr>
</tbody>
</table>
| **Applications** | WB: 1 : 1000 (AP staining) (see remarks)
IP: yes
ICC: 1 : 100 up to 1 : 1000
IHC: 1 : 500
IHC-P/FFPE: 1 : 500 |
| **Label** | biotin |
| **Clone** | 41.1 |
| **Subtype** | IgG2a (κ light chain) |
| **Immunogen** | Recombinant protein corresponding to AA 80 to 421 from rat Synaptotagmin1 (UniProt Id: P21707) |
| **Epitop** | Epitop: AA 150 to 240 from rat Synaptotagmin1 (UniProt Id: P21707) |
| **Reactivity** | Reacts with: human (P21579), rat (P21707), mouse (P46096), mammals, zebrafish. Other species not tested yet. |
| **Specificity** | Specific for mammalian synaptotagmin 1, no cross-reactivity to other synaptotagmins. K.O. |
| **Remarks** | Since synaptotagmin 1 is unevenly expressed in neuronal subpopulations and may, in fact, be missing from some, it is less well suited as a general marker for synapses.
WB: Non-boiled samples are recommended when running SDS-PAGE. |

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Access the online factsheet including applicable protocols at https://sysy.com/product/105011BT or scan the QR-code.
FAQ - How should I store my antibody?

Shipping Conditions

- All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freeze-dried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized! Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- Control peptides should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle between freezing and thawing (to reduce frost-build-up), which is exactly what should be avoided. For the same reason, antibody vials should be placed in an area of the freezer that has minimal temperature fluctuations, for instance towards the back rather than on a door shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 10 µl) and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock concentration is affected by evaporation and adsorption of the antibody to the surface of the storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides:

- Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- Purified IgG should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is recommended. Adding a carrier protein like BSA will increase long term stability. Most of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Fluorescence-labeled Antibodies

- Store as a liquid with 1 : 1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add the amount of deionized water given in the respective datasheet. If higher volumes are preferred, add water as mentioned above and then the desired amount of PBS and a stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies already contain albumin. Take this into account when adding more carrier protein. For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1 : 1 (v/v) glycerol to a final concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freeze-thaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.