Endobrevin

Cat.No. 104 302; Polyclonal rabbit antibody, 200 µl antiserum (lyophilized)

Data Sheet

<table>
<thead>
<tr>
<th>Reconstitution/Storage</th>
<th>200 µl antiserum, lyophilized. For reconstitution add 200 µl H₂O₂, then aliquot and store at -20°C until use.</th>
</tr>
</thead>
</table>
| Applications | WB: 1 : 1000 (AP staining)
 | IP: yes
 | ICC: 1 : 100 up to 1 : 500
 | IHC: yes
 | IHC-P/FFPE: 1 : 200 |
| Immunogen | Recombinant protein corresponding to AA 1 to 75 from rat Endobrevin (UniProt Id: Q9WUF4) |
| Reactivity | Reacts with: human (Q9BV40), rat (Q9WUF4), mouse (Q70404). Other species not tested yet. |
| Specificity | Specific for endobrevin. K.D. PubMed: 28202687 |

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Endobrevin/VAMP8, a member of the SNARE family of proteins, is a relative of synaptobrevin that is involved in the fusion of early and late endosomes. Endobrevin is expressed in most mammalian cells but appears to be absent from neurons. The protein is predominantly localized to early and late endosomal membranes but is also found on other membranes and organelles involved in endocytic membrane traffic. In the fusion of late endosomes it forms SNARE complexes with syntaxin 7, syntaxin 8 and vti1b.

Selected References SYSY Antibodies

A proteomic approach to identify endosomal cargoes controlling cancer invasiveness.
WB, IP, ICC, IHC-P

A role for VAMP8/endobrevin in surface deployment of the water channel aquaporin 2.
Wang CC, Ng CP, Shi H, Liew HC, Guo K, Zeng Q, Hong W
WB, IHC

VAMP8-mediated NOX2 recruitment to endosomes is necessary for antigen release.
Dingjan I, Paardekooper LM, Verboogen DRJ, von Mollard GF, Ter Beest M, van den Bogaard G
WB, IHC; KD verified; tested species: human

Oxidized phagosomal NOX2 complex is replenished from lysosomes.
Dingjan I, Linders PT, van den Bekkerom L, Bananov MV, Halder P, Ter Beest M, van den Bogaard G
WB, IHC; KD verified; tested species: human

Leishmania major Promastigotes Evade LC3-Associated Phagocytosis through the Action of GP63.
Matte C, Casgrain PA, Séguin Q, Moradin N, Hong WJ, Descoteaux A
WB, IHC

Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses.
WB, IHC; tested species: mouse

Vesicular transport system in myotubes: ultrastructural study and signposting with vesicle-associated membrane proteins.
Tajika Y, Takahashi M, Kairaani AF, Ueno H, Murakami T, Yorifuji H
WB, ICC

Ho YH, Cai DT, Wang CC, Huang D, Wong SH
WB, IHC

Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion.
Weng N, Thomas DD, Grobliwski GE
WB, ICC; tested species: rat

Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes.
Peer J (2020) 8: e8751.
WB, KD verified; tested species: mouse

Invasion by activated macrophages requires delivery of nascent MT1-MMP through late endosomes/lysosomes to the cell surface.
Röhl J, West ZE, Rudolph M, Zaharia A, Van Lonkhuyzen D, Hickey DK, Semmler-ABT, Murray RZ
WB, KD verified; tested species: mouse

Cardiac SNARE Expression in Health and Disease.
Bowman PRT, Smith GL, Gould GW
WB, IHC; tested species: mouse

Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice.
Williams CM, Li Y, Brown E, Poole AW
WB, tested species: mouse

ICC; tested species: cos cells

Reversal of Pathologic Lipid Accumulation in NPC1-Deficient Neurons by Drug-Promoted Release of LAMP1-Coated Lamellar Inclusions.
Demais V, Barthelemy A, Perrat M, Ungerer N, Neime K, Reibel S, Pfiugwer F
IHC; tested species: rat

Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking.
Sadler JB, Bryant NJ, Gould GW
WB