Data Sheet

<table>
<thead>
<tr>
<th>Reconstitution/Storage</th>
<th>100 µg purified IgG, lyophilized. For reconstitution add 100 µl H2O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.</th>
</tr>
</thead>
</table>
| Applications | WB: 1:1000 (AP staining)
 | IP: yes
 | ICC: 1:500 up to 1:1000
 | IHC: 1:500 up to 1:2000
 | IHC-P/FFPE: not tested yet |
| Clone | 101.1 |
| Subtype | IgG1 (kappa light chain) |
| Immunogen | Recombinant protein corresponding to AA 1 to 355 from rat GaO2 |
| Epitope | Epitope: AA 1 to 355 from rat GaO2 |
| Reactivity | Reacts with: rat (PS9215), mouse (P18872), zebrafish. Other species not tested yet. |
| Specificity | Recognizes GaO 1 and GaO 2. (K.O. verified) |

Selected References SYSY Antibodies

The α-subunit of the trimeric GTPase Go2 regulates axonal growth.
Baron J, Blex C, Rohrbeck A, Rachakonda SK, Birnbaumer L, Ahnert-Hilger G, Brunk I

GaOalpha2 regulates vesicular glutamate transporter activity by changing its chloride dependence.

Balance of Ga1α and Ga2α expression regulates motor function via the striatal dopaminergic system.

Selected General References

Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic β cells.

The neuronal monoamine transporter VMAT2 is regulated by the trimeric GTPase Go(2).

The heterotrimeric G protein Go2 regulates catecholamine uptake by secretory vesicles.
Ahnert-Hilger G, Nürnberg B, Exner T, Schäfer T, Jahn R

Neurotransmitters like monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by transmitter specific vesicular transporters.

It has been shown that the monoamine transporters VmaT 1 and VmaT 2 are under negative regulation by different α subunits of trimeric G-proteins.

In contrast, the vesicular glutamate transporters (VGLUTs) are exclusively regulated by GaO2 which modulates the chloride dependence of these proteins.