### Data Sheet

**Cat. No. 224-2P; control peptide, 100 µg peptide (lyophilized)**

<table>
<thead>
<tr>
<th>Reconstitution/Storage</th>
<th>100 µg peptide, lyophilized. For reconstitution add 100 µl H2O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use. Control peptides should also be stored at -20°C when still lyophilized!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogen</td>
<td>Synthetic peptide corresponding to AA 28 to 43 from rat GABA-A receptor α1 (UniProt Id: P62813)</td>
</tr>
<tr>
<td>Recommended dilution</td>
<td>Optimal concentrations should be determined by the end-user.</td>
</tr>
<tr>
<td>matching antibodies</td>
<td>224 203, 224 204, 224 205, 224 211</td>
</tr>
<tr>
<td>Remarks</td>
<td>This control peptide consists of the synthetic peptide (aa 28-43) that has been used for immunization. It has been tested in preadsorption experiments and blocks efficiently and specifically the corresponding signal in Western blots. The amount of peptide needed for efficient blocking depends on the titer and on the affinity of the antibody to the antigen.</td>
</tr>
</tbody>
</table>

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

**GABA-A receptor α1**

<table>
<thead>
<tr>
<th>Selected General References</th>
</tr>
</thead>
</table>
| The distribution of thirteen GABA-A receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development.  
Laurie DJ, Wisden W, Seeburg PH  
| GABA-A receptor heterogeneity modulates dendrodendritic inhibition.  
Sassoé-Pognetto M, Panzanelli P, Lagier S, Fritschy JM, Lledo PM  
| Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABA-A receptors at somatic and dendritic synapses of Purkinje cells.  
Vilteno L, Patrizi A, Fritschy JM, Sasson-Pognetto M  
| Compensatory alteration of inhibitory synaptic circuits in cerebellum and thalamus of gamma-aminobutyric acid type A receptor alpha1 subunit knockout mice.  
Kalic J, Sidler C, Parpan F, Homanics GE, Morrow AL, Fritschy JM  
| Postsynaptic clustering of major GABA-A receptor subtypes requires the gamma 2 subunit and gephyrin.  
Essrich C, Lorez M, Benson JA, Fritschy JM, Lüscher B  
| GABA-A receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits.  
Fritschy JM, Mohler H  
| Distribution, prevalence, and drug binding profile of gamma-aminobutyric acid type A receptor subtypes differing in the beta-subunit variant.  
Benke D, Fritschy JM, Trzciak A, Bannwarth W, Mohler H  
| The distribution of 13 GABA-A receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum.  
Laurie DJ, Seeburg PH, Wisden W  
| The distribution of 13 GABA-A receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon.  
Wisden W, Laurie DJ, Monyer H, Seeburg PH  
| Five subtypes of type A gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies.  
Fritschy JM, Benke D, Mertens S, Dertel WH, Bachi T, Mohler H  
| Cerebellar GABA-A receptor selective for a behavioural alcohol antagonist.  

**Gamma-aminobutyric acid type A (GABA-A) receptors** mediate the majority of inhibitory neurotransmission in the brain. These receptor proteins are ligand gated chloride ion channels and consist of a pentameric combination of different subunits (alpha, beta, gamma, delta, epsilon and rho). The resulting heterogenous population of GABA-A receptor subtypes are expressed throughout the brain with specific cellular and subcellular expression patterns.