m6A (N6-methyladenosine) is a posttranscriptional RNA-modification found throughout all kingdoms, e.g. in vertebrate snRNAs U2, U4, U6, in viral and eukaryotic mRNAs, and in E. coli 16S rRNA. Recent studies have found that m6A is predominately m6A modified at stop codons and long internal exons, which are conserved between mouse and human. The so-called RNA methylease probably plays an important role in the regulation of gene expression. In E. coli Dam methylase introduces m6A modifications on the DNA level at the 5'-GATC-3' motif. This probably plays an important role in the regulation of gene expression.

Recent studies have found that mRNA is predominately m6A modified at stop codons and long internal exons, which are conserved between mouse and human. The so-called RNA methylome is a posttranscriptional RNA-modification found throughout all kingdoms, e.g. in vertebrate snRNAs U2, U4, U6, in viral and eukaryotic mRNAs, and in E. coli 16S rRNA. Recent studies have found that m6A is predominately m6A modified at stop codons and long internal exons, which are conserved between mouse and human.

The so-called RNA methylease probably plays an important role in the regulation of gene expression. In E. coli Dam methylase introduces m6A modifications on the DNA level at the 5'-GATC-3' motif. This probably plays an important role in the regulation of gene expression.

Remarks

- **IP**: Extracts from eukaryotic and prokaryotic cells. Standard protocol for the IP of nuclear extracts is provided with the product.
- For the isolation of m6A modified RNA from total or mRNA preparations the protocol according to Domininissi et al. (2013) is recommended.

Applications

- WB: 1: 1000 up to 1: 10000 (AP staining) suitable for Dot Blot
- ICC: not tested yet
- IHC: not tested yet
- ELISA: yes suitable for sandwich-ELISA

Immunogen

N6-methyladenosine fused to BSA.

Reactivity

Reacts with: human, rat, mouse, eukaryotes, prokaryotes. Other species not tested yet.

Specificity

Specific for N6-methyladenosine (m6A).

Selected References SYSY Antibodies

DOTBLOT, IP

DOTBLOT, IP; tested species: human

DOTBLOT, IP

DOTBLOT; IP; tested species: drosophila

DOTBLOT, IP

DOTBLOT; ip; tested species: mouse

DOTBLOT, ICC

DOTBLOT, IP

DOTBLOT, IP

IP, ICC; tested species: zebrafish, pig

Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Linder B, Grzókh AV, Olarinrin-George AO, Meydan C, Mason CE, Jaffrey SR.

DOTBLOT, ip; tested species: human, mouse

DOTBLOT, IP

Nature communications (2015) :.

DOTBLOT, IP

DOTBLOT, IP

IP, tested species: pig

IP; tested species: mouse
Anti- m6A (N6-methyladenosine)

rabbit polyclonal affinity purified antibody; cat. no. 202 003

Standard Protocol for Immunoprecipitation

1. 10 - 15 µg antibody per assay are coupled to protein A or protein G-sepharose in PBS-buffer at 4 °C head over tail (several hours).
2. The pellet is washed three times with ice-cold PBS.
3. Incubate immobilized antibody with extract in appropriate buffer for 1 hour on a head over tail rotor at 4°C. The buffer should be optimized to your needs, i.e. the investigated complexes should be stable in the buffer. The buffer should provide stringency to avoid non-specific interaction, e.g. 20 µl of HeLa nuclear extract in 250 µl IPP buffer (Tris-HCL, pH 7.4, 150 mM NaCl, 0.1 % NP40). Generally, non-specific interactions should be controlled with a parallel pull-down assay using protein A/G-sepharose without antibody.
4. Wash five times with one ml of buffer. Usually, the buffer used for washing is identical with the incubation buffer in step 3. After two washes the content of the reaction tube should be transferred to a new one. This step significantly reduces background in pull-down assays.
5. The pellet-bound RNA can be isolated by shaking the tube with 250 µl of buffer with one volume of phenol/chloroform and subsequent ethanol precipitation of the aqueous phase. Alternatively, the precipitated RNA-(complex) may be eluted by shaking with 250 µl of RNA-elution buffer (e.g. Tris-HCL, pH 7.4, 450 mM NaCl, 0.4% SDS). After phenol/chloroform-extraction of the eluate protein and RNA-containing phases are precipitated and subjected to analysis.
6. RNA-analysis: native RNA may be analyzed by 3´-terminal pCp-labelling or Northern.
7. pCp-Labelling: take care that the RNA-pellet is free of residual phenol by washing the pellet twice with 80% ethanol. Dry pellet in a sped-vac and incubate with 10 µl of reaction mixture at 4 °C over night (e.g. in a fridge).

Reaction mixture (10 µl/assay):

- 1 µl 10X T4 RNA Ligase buffer (e.g. New England Biolabs)
- 0.5 µl T4 RNA Ligase (e.g. New England Biolabs)
- 2.5 µl DMSO
- 1 µl RNAse- Inhibitor (recommended)
- 5 µl pCp (Amersham/Pharmacia)

The reaction mixtures may be loaded directly on a denaturing polyacrylamid gel. It should be noted, however, that occasionally upon direct loading additional bands can appear. To avoid such gel artifacts, a phenol/chloroform extraction may be performed.