Cat.No. 198 013; Polyclonal rabbit antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/Storage

50 µg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin was added for stabilization. For reconstitution add 50 µl H₂O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.

Applications

	WB: not recommended
	IP: not tested yet
	ICC: 1 : 500
	IHC: 1 : 200 up to 1 : 500
	IHC-P/FFPE: 1 : 1000

Immunogen

Recombinant protein corresponding to AA 3 to 101 from mouse GAD1 (UniProt Id: P48318)

Reactivity

Reacts with: human (Q99259), rat (P18088), mouse (P48318).

Other species not tested yet.

Specificity

Specific for GAD 1 / GAD 67.

Selected References SYSY Antibodies

Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke.

Härtig W, Appel S, Suttokus A, Grosche J, Michalski D

Neuroscience (2016) 337: 66-87. IHC

Directing astrogliosis from the cerebral cortex into subtype specific functional neurons.

NETO1 Regulates Postsynaptic Kainate Receptors in CA3 Interneurons During Circuit Maturation.

Orav E, Dowswill J, Huuspenen J, Taira T, Lauri SE

Molecular neurobiology (2019) ; IHC; tested species: mouse

Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses.

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

The glutamic acid decarboxylases GAD 1, also referred to as GAD 67, and GAD 2 / GAD 65 synthesize y-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. The hydrophilic GAD 1 can heterodimerize with the membrane anchored GAD 2 and part of GAD 1 is targeted to inhibitory nerve terminals by this mechanisms. Although both proteins exhibit significant differences in their N-terminus they share high homology in the rest of the molecule.

GADs are widely used markers for the GABAergic system. In type 1 diabetes GAD 1 has been identified as a major autoantigen.

Selected General References

A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.

Kinney JW, Davis CN, Tabarean I, Coni B, Bartfai T, Behrens MM

Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse.

Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T

The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65.

Kanaani J, Lissin D, Kash SF, Baekkeskov S

Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets.

Glutamate decarboxylases in nonneural cells of rat testis and oviduct: differential expression of GAD65 and GAD67.

Tillakaratne NJ, Erlanger MG, Collard MW, Greif KF, Tobin AJ

The glutamic acid decarboxylases GAD 1, also referred to as GAD 67, and GAD 2 / GAD 65 synthesize y-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. The hydrophilic GAD 1 can heterodimerize with the membrane anchored GAD 2 and part of GAD 1 is targeted to inhibitory nerve terminals by this mechanisms. Although both proteins exhibit significant differences in their N-terminus they share high homology in the rest of the molecule.

GADs are widely used markers for the GABAergic system. In type 1 diabetes GAD 1 has been identified as a major autoantigen.