Neurexin 1/2/3

Cat.No. 175 003; Polyclonal rabbit antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/Storage 50 µg specific antibody, lyophilized. Affinity purified with the immunogen. Albumin was added for stabilization. For reconstitution add 50 µl H2O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.

Applications

- WB: 1 : 500 up to 1 : 1000 (AP staining) (see remarks)
- IP: not tested yet
- IHC: not tested yet
- IHC-P/FFPE: not tested yet

Immunogen Recombinant protein corresponding to AA 1459 to 1514 and 1657 to 1712 and 1524 to 1578 from rat Neurexin1/2/3

Reactivity

- Reacts with: rat (Q63372, Q63376, Q07310), mouse (Q9CS84, E9PUM9, Q8C985). Other species not tested yet.
- Due to the homology of the cytoplasmic tails of α- and β-neurexins 1, 2 and 3, this antiserum detects all isoforms and their corresponding splice-variants.

Remarks

- WB: Non-boiled samples yield stronger signals.
- TO BE USED IN VITRO / FOR RESEARCH ONLY
- NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

α- and β-neurexins are single pass transmembrane proteins with a short cytoplasmic C-terminus and a long extracellular N-terminal part. In α-neurexins the extracellular sequence is substantially longer than in β-neurexins. Alternative splicing of the N-terminal part even confers more complexity to this protein family suggesting distinct binding partners for the extracellular regions. In contrast, the C-termini are highly conserved in the different isoforms and splice-variants and they share overlapping cytosolic binding partners. Neurexins are receptor like molecules that form heterologous cell contacts with post-synaptic cell cytosolic binding partners.

Selected References SYSY Antibodies

A novel synaptic junction preparation for the identification and characterization of cleft proteins.

Burch A, Tao-Cheng JH, Dosemeaci A


Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases.

Bot N, Schweitzer C, Ben Halima S, Fraering PC


Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn.


The EMBIO journal (2009) 28(22): 3564-78. WB

Selected General References

Synaptic arrangement of the neurexin/beta-neurexin complex revealed by X-ray and neutron scattering.


Neurexin-neurexin signaling in synapse development.

Craig AM, Kang Y


Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex.

Chih B, Gollan L, Scheiffele P


The neurexin and neurexin families: from structure to function at the synapse.

Lisef MF, Eh-Huseinov A


Expression patterns of neurexin-1 and neurelins in brain and retina of the chick embryo: Neurelpin-3 is absent in retina.

Paraanau LE, Becker-Roed M, Christ E, Layer PG


Synaptic targeting of neurexin is independent of neurexin and SAP90/PSD95 binding.

Drechsel T, Neeb A, Meyer G, Guendelfinger ED, Brose N


Characterization of the interaction of a recombinant soluble neurexin-1 with neurexin-1beta.

Comoletti D, Flynn R, Jennings LL, Chubinsky A, Matsumura T, Hasegawa H, Sudhof TC, Taylor P


Neurexin mediates the assembly of presynaptic terminals.

Dean C, Scholl FG, Choi J, DeMaria S, Berger J, Isacoff E, Scheiffele P


Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing.

Tabuchi K, Sudhof TC


Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexins 1 alpha.

Tohaben S, Sudhof TC, Stahl B


alpha-latrotoxin forms calcium-permeable membrane pores via interactions with latrophilin or neurexin.

Van Renterghem C, Borra C, Martin-Houdot N, Leilanova V, Ushkaryov Y, Seagar M


Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action.


Structures, alternative splicing, and neurexin binding of multiple neurexins.

Ichchenko K, Nguyen T, Sudhof TC


On the structure of the ‘synaptosecretosome’. Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex.

O’Connor VM, Shamotienko O, Grishin E, Betz H