Selected References SYSY Antibodies

EphA4 is localized in clathrin-coated and synaptic vesicles in adult mouse brain.

Expression and function of SNAP-25 as a universal SNARE component in GABAergic neurons.
Tafeyou LC, Mameli M, Miyashita T, Guzowski JF, Valenzuela CF, Wilson MC.

Synapsin-dependent reserve pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission.
Vasileva M, Horstmann H, Geumann C, Giller D, Kuner T.

Glutamatergic Input Varies with Phrenic Motor Neuron Size.
Rana S, Manilla CB, Sieck GC.

Merlin modulates process outgrowth and synaptogenesis in the cerebellum.
Toledo A, Lang F, Doengi M, Morrison H, Stein V, Baader SL.
Brain structure & function (2019) : . ICC; tested species: mouse

A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination.
Molecular neurobiology (2018) 53(9): 7164-7178. IHC; tested species: mouse

PTPσ Drives Excitatory Presynaptic Assembly via Various Extracellular and Intracellular Mechanisms.
Han KA, Ko JS, Pramanik G, Kim JW, Tabuchi K, Um JW, Ko J.

VGLUT 1 Binding to Endophilin or Intersectin 1 and Dynamin Phosphorylation in a Diurnal Context.

LuThy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells.
Molecular systems biology (2018) : . IHC; tested species: mouse

Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy.
EMBO molecular medicine (2018) : . ICC; tested species: mouse

Aspects of excitatory/inhibitory synaptic organization in multiple brain regions are correlated with levels of brain-derived neurotrophic factor/neurotrophin-3.
Biochemical and biophysical research communications (2018) : . IHC; tested species: mouse

Selected Glutamatergic Neuronal Markers and Glutamatergic Synapses.
Nemes AD, Ayasoufi K, Ying Z, Zhou QG, Suh H, Najm IM
Scientific reports (2017) 7(1): 17702. ICC; tested species: rat

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.