Selected References SYSY Antibodies

SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1.

Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus.
Hergoz E, Takamori S, Jahn R, Brose N, Wojcik SM

An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size.
Wojcik SM, Rhee JS, Hergoz E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C

NMDA receptors in GABAergic synapses during postnatal development.
Cserép C, Szabadi E, Szönyi A, Watanabe M, Freund TF, Nyri G

CBS synapses are stabilized trans-synaptically by laminin and laminin-interacting proteins.
Hutter D0, Mangiapis MK, Bachay G, Clauderiepere T, Dohon MW, Gesueli KA, Brunken WJ

Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission.

The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.
Abraira VE, Kuehn ED, Chirila AM, Springler MW, Toliver AA, Zimmerman AL, Greiffel LL, Boyle KA, Bai L, Song BJ, Bashista KA, et al.

Vesicular glutamate transporters play a role in neuronal differentiation of cultured SVZ-derived neural precursor cells.

A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons.
Scientific reports (2016) 6: 23969. WB, ICC

Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.
Neural plasticity (2016) 2016: 2828536. IHC, WB; tested species: mouse

Activity-dependent IGF-1 exocytosis is controlled by the Cal2+ sensor synaptotagmin-10.
Cao P, Maximov A, Südhoff TC

Transient focal cerebral ischemia significantly alters not only EAATs but also VGLUT expressions in rats: relevance of changes in reactive astrogliosis.

Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey.
Zeeh C, Mustari MJ, Hess BJ, Horn AK
Frontiers in neuroanatomy (2015) 9: 95. IHC-P


TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.

The vesicular glutamate transporter 1 VGLUT 1, also referred to as BNPI and SLC17A7, was originally identified as a brain specific phosphate transporter. Like the related VGLUT 2, VGLUT 1 is both necessary and sufficient for uptake and storage of glutamate and thus comprises the sole determinant for a glutamatergic phenotype. Both VGLUTs are different from the plasma membrane transporters in that they are driven by a proton electrochemical gradient across the vesicle membrane.

VGLUT 1 and VGLUT 2 show complementary expression patterns. Together, they are currently the best markers for glutamatergic nerve terminals and glutamatergic synapses.